DNSSEC deployment from server and client side

Petr Špaček & Tomáš Hozza

DNSSEC deployment from server and client side

- Brief introduction
- Generating signing keys
- Manual signing of a zone in BIND
 - messing with signatures
- Automatic zone signing in BIND
- Automagic zone signing in FreeIPA
- Client side with unbound and dnssec-trigger
 - o www.dnssec-failed.org

http://test.devconf.cz

This is a workshop! :-)

- Connect to **wired** network
- Install DNS utilities and daemons
 - \$ sudo yum install bind bind-utils ldns-utils
 - bind-utils package will install DNS root trust anchor to /etc/trusted-key.key (What a great name!)
- Open port 53 in your firewall:
 - \$ sudo firewall-cmd --add-service=dns
 or
 - \$ sudo iptables -I INPUT -p tcp --dport 53 -j ACCEPT
 - \$ sudo iptables -I INPUT -p udp --dport 53 -j ACCEPT
- Be nice and thankful to Brno University of Technology

Creating your own DNS zone

and joining global DNS tree

Creating a shiny new DNS zone

- \$ wget http://test.devconf.cz/fasnick.db \
 -0 /var/named/dynamic/\${fasnick}.db
- Change IP addresses in the file to match reality
 Fix permissions:
- Fix permissions:
- \$ chgrp named /var/named/dynamic/\${fasnick}.db
- Add the zone to /etc/named.conf:
- zone "\${fasnick}.test.devconf.cz." IN {

type master;

file "dynamic/\${fasnick}.db";

};

- Restart BIND: \$ systemct1 restart named
- Test is locally:
 - \$ dig @localhost \${fasnick}.test.devconf.cz.

Testing the new zone

- Test if your new zone is reachable from the Internet
- Make sure you do not have your own local server in /etc/resolv.conf!
- \$ dig \${fasnick}.test.devconf.cz.
- Does it work?
- ;; ->>HEADER<<- opcode: QUERY, status: NOERROR ???</pre>

Fixing the new zone

- \$ dig \${fasnick}.test.devconf.cz.
- ;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN</pre>
- Delegation from the parent zone is missing!
- \$ nsupdate -y HMAC-SHA512:keyname:keyvalue
- > server testns.devconf.cz.

- > send

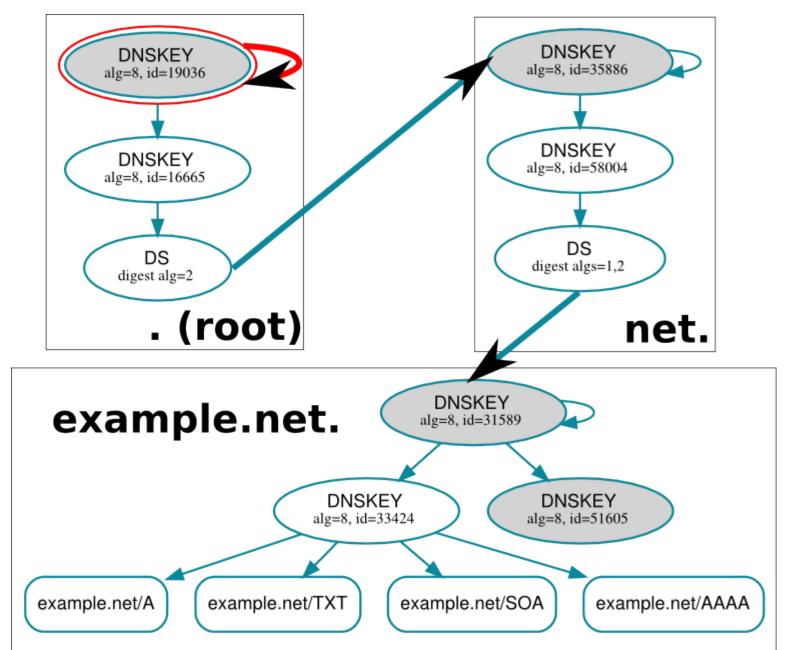
Testing the new zone

- Test if your new zone is reachable from the Internet
- Make sure you do not have your own local server in /etc/resolv.conf!
- \$ dig \${fasnick}.test.devconf.cz.
- Does it finally work?

DNSSEC theory

finally ;-)

What is **DNSSEC**


- DNS Security Extensions
- DNS data + signatures (public key crypto)
 - Effectively prevents DNS spoofing
 - Enables new DNS applications:
 - Binding X.509 CA and a domain name
 - TLS certificate validation (e.g. for self-signed certs)
 - PGP key distribution
 - IPsec key distribution
 - more to come

How DNSSEC works

- Root of DNS tree = well-known entry point
 - redhat.com ←

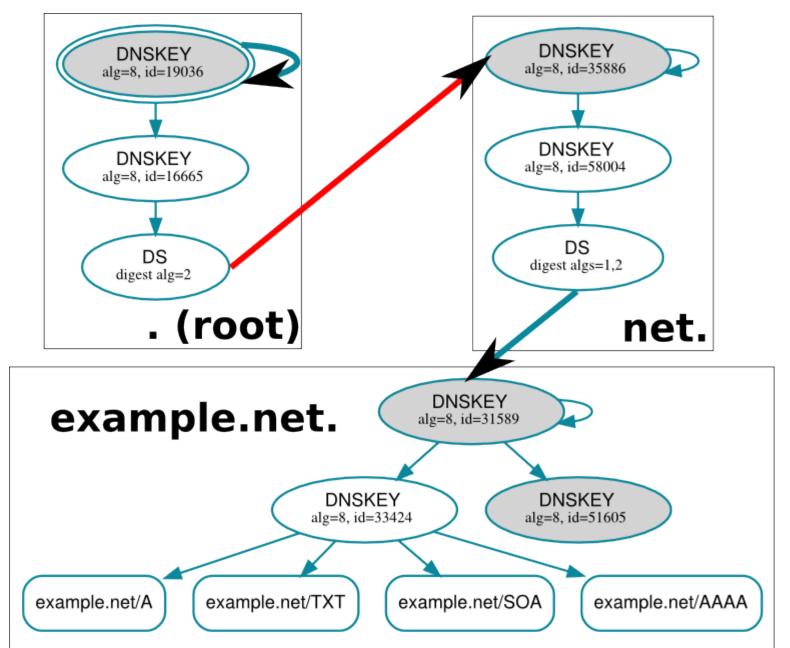
- Validating resolvers know public key of DNS root (the default trust anchor)
 This public key is distributed with resolver software
- Parent DNS zone publishes hashes of public keys used by its child domains
 - Chain of trust from root downwards

Chain of trust from root downwards

Chain of trust from root downwards: DNS root trust anchor

• Public key used by DNS root "." is installed on every validating resolver:

\$ cat /etc/trusted-key.key


. 3600 IN DNSKEY 257 3 8

AwEAAagAIK1VZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW008gcCjFFVQU <snip>

\$ dig . DNSKEY

- Alternative: hashes in form of DS records
 \$ dnssec-dsfromkey -f /etc/trusted-key.key .
 IN DS 19036 8 1 B256BD09DC8DD59F0E0F0D8541B8328DD986DF6E
- . IN DS 19036 8 2 49AAC11D7B6F6446702E54A1607371607A1A41855200FD2CE1CDDE32F24E8FB5

Chain of trust from root downwards: DS

Chain of trust from root downwards: Delegation Signer

• DNS root "." publishes hashes of public keys used by top-level domain "net.":

\$ dig +trace +dnssec net. DS

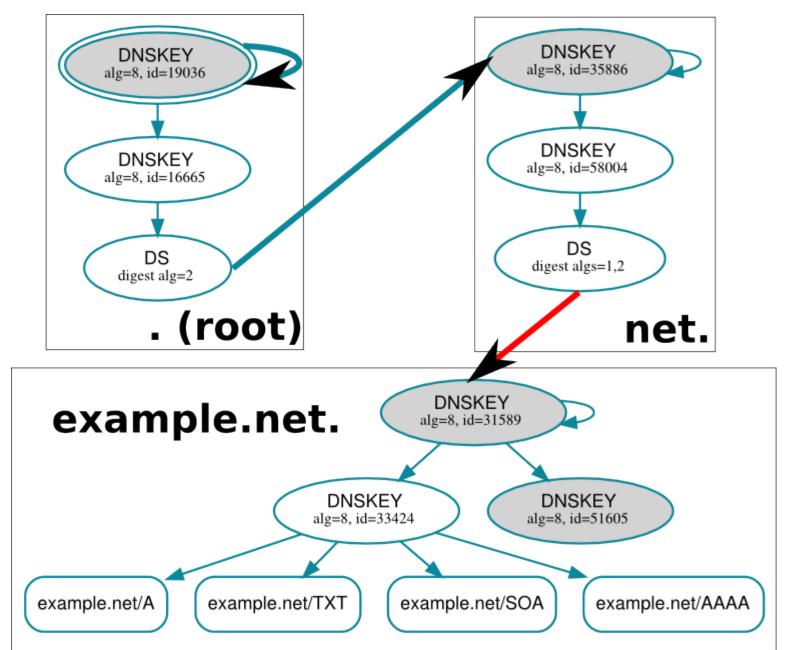
. 393056 IN NS l.root-servers.net. <snip> net. 86400 IN DS 35886 8 2 7862B27F5F516EBE19680444D4CE5E762981931842C465F00236401D 8BD973EE

net. 86400 IN RRSIG DS 8 1 86400 20150124050000 20150114040000 16665 . MfJ2jhBa+tswIOrZIOBqbjRmhh4E+6xkWstRRe/uxmVAZ7/lrifqM01 <snip>

;; Received 239 bytes from 199.7.83.42#53(l.root-servers.net) in 37 ms

Chain of trust from root downwards: DNSKEY

- Public keys used by "net." can be obtained directly from "net." DNS servers:
- \$ dig +trace +dnssec net. DNSKEY
 net. 172800 IN NS j.gtld-servers.net.
 <snip>
- net. 86400 IN DNSKEY 257 3 8
 AQOYBnzqWXIEj6mlgXg4LWC0HP2n8eK8XqgHlmJ/69iuIHsa1TrHDG6T
 <snip>
- ;; Received 889 bytes from
 192.48.79.30#53(j.gtld-servers.net) in 466 ms


Chain of trust from root downwards: Matching DS and DNSKEY records

- Do DNSKEY and DS records match?
- \$ dig net. DNSKEY > net.dnskey
- \$ dnssec-dsfromkey -f net.dnskey net.
- net. IN DS 35886 8 1 466A9EDD47858E9E06944FC02B5AE19DBCBA7EC8
- net. IN DS 35886 8 2 7862B27F5F516EBE19680444D4CE5E762981931842C465F00236401D8B D973EE

\$ dig net. DS

net. 86400 IN DS 35886 8 2 7862B27F5F516EBE19680444D4CE5E762981931842C465F00236401D8B D973EE

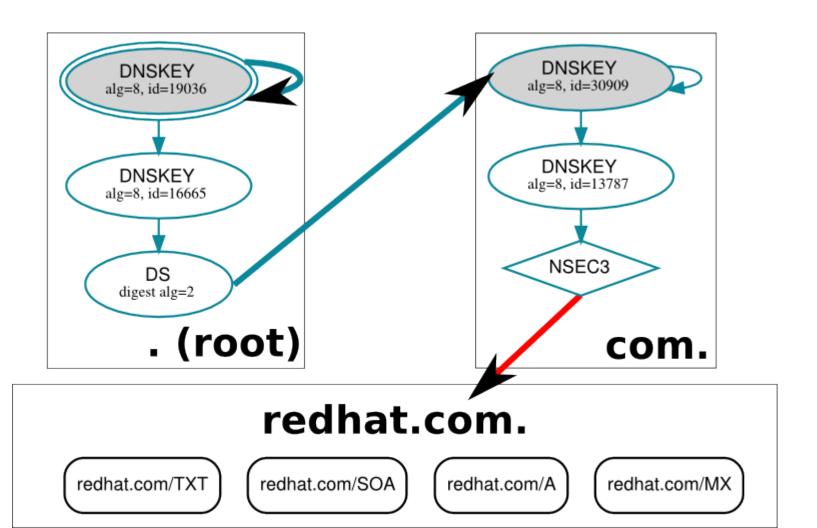
Chain of trust from root downwards

Result: Hierarchical trust model

- my.example.net. can be spoofed only by its parents:
 - \circ example.net.
 - net.
 - DNS root .
- Compare situation with X.509 PKI:
- There were 1,482 CA Certificates trustable by Windows or Firefox in 2010
 - See

https://www.eff.org/observatory

Proof of non-existence


• Signed information that something does not exist in DNS tree:

\$ dig +dnssec \ hopefully.nonexistent.example.net.

example.net. 3600 IN NSEC www.example.net. A NS SOA TXT AAAA RRSIG NSEC DNSKEY

Mixing signed & unsigned zones

 Proof of non-existence of DS record in com. domain

Generation of KEYs

KSK & ZSK

KSK & ZSK

- Generation of KSK
- \$ dnssec-keygen -a RSASHA256 -b 4096 \
 - -f KSK \${fasnick}.test.devconf.cz.
- Generation of ZSK
- \$ dnssec-keygen -a RSASHA256 \
 - -b 1536 \${fasnick}.test.devconf.cz.
- In this example use -r /dev/urandom for faster key generation.
- Key-pair
 - o K<name>+<alg>+<id>.key
 - o K<name>+<alg>+<id>.private

Manual zone signing with BIND 9

Manual zone signing

- sign the zone file in the /var/named/dynamic
- \$ dnssec-signzone -S \
 - -o \${fasnick}.test.devconf.cz. \${fasnick}.db
- signed zone \${fasnick}.db.signed
- Adjust the /etc/named.conf
- zone "\${fasnick}.test.devconf.cz." IN {

type master;

file "dynamic/\${fasnick}.db.signed";

- };
- Reload BIND: # systemctl reload named

Testing the chain of trust

\$ drill -TD -k /etc/trusted-key.key \
 \${fasnick}.test.devconf.cz. DNSKEY

Uploading DS record to parent zone

- \$ dig @localhost <fasnick>.test.devconf.cz \
 DNSKEY > /tmp/your-keys \
 <fasnick>.test.devconf.cz
- \$ dnssec-dsfromkey -T 10 -f /tmp/your-keys \
 <fasnick>.test.devconf.cz
- \$ nsupdate -y HMAC-SHA1:keyname:keyvalue
- > server testns.devconf.cz
- > update add <copy & paste here the DS record>
- > send

Testing the chain of trust

\$ drill -S -k /etc/trusted-key.key \ \${fasnick}.test.devconf.cz.

• example output

;; Number of trusted keys: 1

;; Chasing: devconf.cz. A

DNSSEC Trust tree: devconf.cz. (A) |---devconf.cz. (DNSKEY keytag: 18620 alg: 7 flags: 256) |---devconf.cz. (DNSKEY keytag: 4515 alg: 7 flags: 257) |---devconf.cz. (DS keytag: 4515 digest type: 1) |---cz. (DNSKEY keytag: 12305 alg: 10 flags: 256) |---cz. (DNSKEY keytag: 54576 alg: 10 flags: 257) |---cz. (DS keytag: 54576 digest type: 2) |---. (DNSKEY keytag: 16665 alg: 8 flags: 256) |---. (DNSKEY keytag: 19036 alg: 8 flags: 257)

;; Chase successful

Let's break some signatures

- Edit RRGIG for some particular record
 - edit the \${fasnick}.db.signed
 - change some letter, delete some part, ...
- Reload BIND: # systemctl reload named
- Retest with drill and watch the Chase to fail

Automatic zone signing with BIND 9

Automatic zone signing

Adjust the /etc/named.conf

```
zone "${fasnick}.test.devconf.cz." IN {
   type master;
   file "dynamic/${fasnick}.db";
   update-policy local;
   auto-dnssec maintain;
   key-directory "dynamic";
```

};

- Change KSK and ZSK keys owner
- \$ chown named /var/named/dynamic/K*.{key,private}
- Reload BIND: # systemctl reload named

Testing the chain of trust

\$ drill -S -k /etc/trusted-key.key \ \${fasnick}.test.devconf.cz.

• example output

;; Number of trusted keys: 1

;; Chasing: devconf.cz. A

DNSSEC Trust tree: devconf.cz. (A) |---devconf.cz. (DNSKEY keytag: 18620 alg: 7 flags: 256) |---devconf.cz. (DNSKEY keytag: 4515 alg: 7 flags: 257) |---devconf.cz. (DS keytag: 4515 digest type: 1) |---cz. (DNSKEY keytag: 12305 alg: 10 flags: 256) |---cz. (DNSKEY keytag: 54576 alg: 10 flags: 257) |---cz. (DS keytag: 54576 digest type: 2) |---. (DNSKEY keytag: 16665 alg: 8 flags: 256) |---. (DNSKEY keytag: 19036 alg: 8 flags: 257)

;; Chase successful

Automatic zone signing

with FreeIPA 4.1

FreeIPA: overview

• LDAP, Kerberos, NTP, DNS, X.509 Certificate System, ...

... as an integrated management solution

- User interface, APIs etc. for existing implementations: ISC BIND 9
- Automate what can be automated!
- Packages:
 - freeipa-server (Fedora)
 - ipa-server (RHEL)
- http://www.freeipa.org/page/Demo

FreeIPA: CLI

- Command line interface for DNSSEC signing
- \$ ipa dnszone-mod example.net. \
 --dnssec=true
- \rightarrow the zone is signed
- → keys are automatically rotated
 - The only manual step:
 - Upload DS records (hashes of public keys) to parent zone - details depend on DNS registrar

FreeIPA: Web UI

• Web interface for DNSSEC signing

🎁 freelPA					💄 Administrator 🗸
Identity	Policy	Authentication	Network Services	IPA Server	
Automount	DNS ~				

DNS Zones » demo1.freeipa.org

✓ DNS Zone: demo1.freeipa.org

DNS Zone Settings

Zone name	demo1.freeipa.org		1
		<snip></snip>	
Allow in-line DNSSEC signing			
NSEC3PARAM record			

FreeIPA: zone signing how-to

- 1. Sign the zone:
- \$ ipa dnszone-mod example.net. \
 --dnssec=true
- 2. Upload DS records
 - \$ dig @localhost \
 example.net DNSKEY > dnskey
 - \$ dnssec-dsfromkey -f dnskey \

example.net.

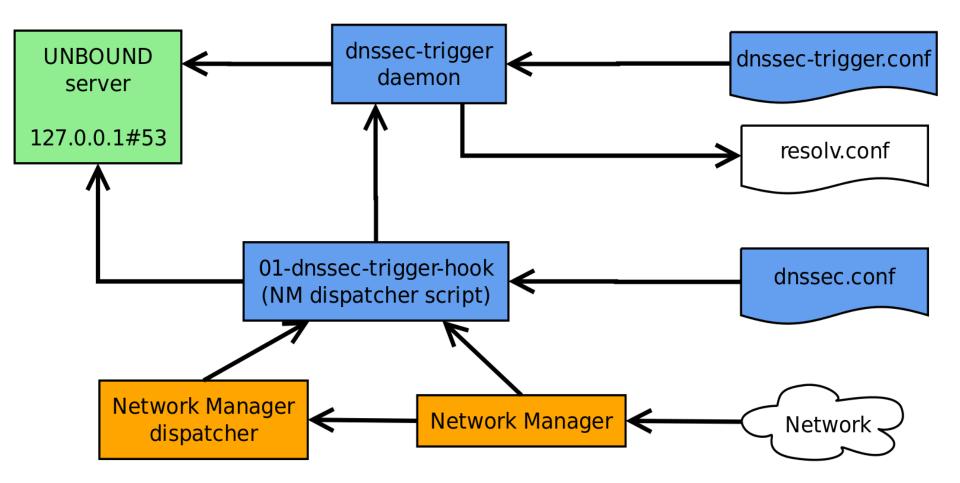
example.net. IN DS 35886 8 2 7862B27F5F516EBE19680444D4CE5E762981931842C465F00236 401D8BD973EE

DNSSEC on the client

a.k.a. unbound + dnssec-trigger

Testing that you are NOT secured

- Assumption: you are not already running local validating resolver
- Try to get deliberately DNSSEC broken sites
 \$ wget rhybar.cz
 \$ wget dpssec_failed org
 - o \$ wget dnssec-failed.org
- Test that chain of trust is broken


 \$ drill -S -k /etc/trusted-key.key \
 <domain>

What do you need

- Install packages

 unbound, dnssec-trigger
- Start and enable the service
 - # systemctl enable dnssec-triggerd
 - # systemctl start dnssec-triggerd

How it works

Testing that you ARE secured

- Assumption: you are running dnssec-trigger and unbound
- Try to get deliberately DNSSEC broken sites
 \$ wget rhybar.cz
 - o \$ wget dnssec-failed.org
- Finally, no one can spoof signed DNS records

Contacts

Petr Špaček pspacek@redhat.com Tomáš Hozza thozza@redhat.com

Feedback URL http://devconf.cz/f/140

Other details

- Validators can be locally configured with arbitrary trust anchors
 - E.g. my.example.net can be signed only by a key you hardcoded into client configuration because you do not trust example.net or anybody else!
- RFC 5011 defines trust anchor auto-update
 - key revocation and roll-over
 - resilient up to N-1 key compromises

\$ cat /etc/named.root.key managed-keys {

. initial-key 257 3 8 "VLOyQbSEW008gcCjF...";

};